Classical and Quantum Gravity

PAPER « OPEN ACCESS

Does spacetime have memories? Searching for
gravitational-wave memory in the third LIGO-
Virgo-KAGRA gravitational-wave transient
catalogue

To cite this article: Shun Yin Cheung et al 2024 Class. Quantum Grav. 41 115010

View the article online for updates and enhancements.

You may also like

- Bilby: A User-friendly Bayesian Inference

Library for Gravitational-wave Astronomy
Gregory Ashton, Moritz Hibner, Paul D.
Lasky et al.

- Multi-messenger Observations of a Binary

Neutron Star Merger
B. P. Abbott, R. Abbott, T. D. Abbott et al.

- Black holes, gravitational waves and

fundamental physics: a roadmap
Abbas Askar, Chris Belczynski, Gianfranco
Bertone et al.

This content was downloaded from IP address 1.43.205.93 on 28/07/2024 at 02:38


https://doi.org/10.1088/1361-6382/ad3ffe
/article/10.3847/1538-4365/ab06fc
/article/10.3847/1538-4365/ab06fc
/article/10.3847/1538-4365/ab06fc
/article/10.3847/2041-8213/aa91c9
/article/10.3847/2041-8213/aa91c9
/article/10.1088/1361-6382/ab0587
/article/10.1088/1361-6382/ab0587

OPEN ACCESS

I0OP Publishing

Classical and Quantum Gravity

Class. Quantum Grav. 41 (2024) 115010 (11pp) https://doi.org/10.1088/1361-6382/ad3ffe

Does spacetime have memories?
Searching for gravitational-wave memory
in the third LIGO-Virgo-KAGRA
gravitational-wave transient catalogue

Shun Yin Cheung!**®, Paul D Lasky'~ and Eric Thrane'*

! School of Physics and Astronomy, Monash University, Clayton, VIC 3800,
Australia

2 0zGrav: The ARC Centre of Excellence for Gravitational Wave Discovery,
Clayton, VIC 3800, Australia

E-mail: shun.cheung@monash.edu, paul.lasky @monash.edu and
eric.thrane @monash.edu

Received 1 March 2024; revised 8 April 2024
Accepted for publication 17 April 2024 @
Published 7 May 2024

CrossMark
Abstract

Gravitational-wave memory is a non-linear effect predicted by general relativ-
ity that remains undetected. We apply a Bayesian analysis framework to search
for gravitational-wave memory using binary black hole mergers in LIGO-
Virgo-KAGRA'’s third gravitational-wave transient catalogue. We obtain a
Bayes factor of InBF = 0.01, in favour of the no-memory hypothesis, which
implies that we are unable to measure memory with currently available data.
This is consistent with previous work, suggesting that a catalogue of O (2000)
binary black hole mergers is needed to detect memory. We look for new physics
by allowing the memory amplitude to deviate from the prediction of general
relativity by a multiplicative factor A. We obtain an upper limit of A <23 (95%
credibility).
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1. Introduction

The landmark detection of gravitational waves from the merger of a binary black hole in 2015
by the LIGO-Virgo Scientific Collaboration has provided new methods to test general relativity
and fundamental physics [1, 40]. However, a particularly interesting phenomenon predicted by
general relativity remains unconfirmed: gravitational-wave memory. Linear memory was first
predicted by Zel’dovich and Polnarev and is produced from unbound systems such as hyper-
bolic orbits, supernovae and triple black hole interactions [10, 47]. In 1991, Christodoulou
identified a significant non-linear memory component in bound systems, such as compact bin-
ary mergers [11]. Non-linear memory arises from the gravitational waves themselves, resulting
in an accumulation of memory that physically manifests as a permanent displacement between
test masses following the passage of gravitational waves [42].

The displacement memory signal has not yet been directly observed because the amplitude
of the memory is only around <5% of the oscillatory waveform amplitude for a GW150914-
like event [23]. Due to the low amplitude of memory, a direct detection of memory from a single
event is improbable with current gravitational-wave detectors, unless observatories detect a
surprisingly close (/=20 Mpc) binary black hole event [16, 22, 23]. Therefore, previous work
focuses on detecting memory in the entire population of gravitational-wave events, rather than
a single event [23]. Searches for memory have been carried out with data from the first [18]
and second [17] gravitational-wave transient catalogue (GWTC). No evidence of memory was
found and reference [17] showed that definitive evidence of memory is likely to require an
ensemble of @(2000) gravitational-wave events [16, 17]. Proposed future gravitational-wave
detectors such as Cosmic Explorer [28], the Einstein Telescope [27] and LISA [6] may be able
to directly detect memory from a single event [16, 21].

Theoretical work has shown that gravitational-wave memory is connected to the Bondi—
Metzner—Sachs (BMS) symmetry group and Weinberg’s soft graviton theorem in quantum
field theory [34, 45]. Each of these three seemingly unrelated concepts represent a corner in the
so-called ‘infrared triangle’ [33]. These connections may serve as a possible bridge between
general relativity and quantum field theory, and can be used to test spacetime symmetries
[15]. These connections to asymptotic symmetries and soft theorems may provide insight to
the black hole information paradox [19].

Recent work seeks to test if the memory amplitude is consistent with predictions from
general relativity [15, 31]. The premise of these studies is that new physics could produce
deviations from general relativity that may lead to a different memory amplitude [20]. Other
work explores how the inclusion of memory may help to improve the accuracy of gravitational-
wave parameter estimation [14, 24, 46]. Still other publications have discussed the possibility
of identifying subsolar-mass compact binary mergers [12] and using memory to distinguish
between neutron star-black hole binary and binary black hole mergers [43].

In this paper, we perform a search for gravitational-wave displacement memory using 88
events from LIGO-Virgo—-KAGRA’s third GWTC-3. Since we are well short of the ~2000
events that are expected to be required to detect memory, we view this paper as an ongoing
effort to refine the memory detection pipeline and identify potential problems early. In order
to search for new physics, we constrain the memory scale factor, which is A =1 in general
relativity. We show that this search is complicated by low-frequency, non-Gaussian noise. We
discuss possible remediation strategies.

The remainder of this paper is structured as follows. In section 2, we describe our search for
gravitational-wave memory using data from GWTC-3. In section 3, we describe our search for
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physics beyond general relativity and our constraints on the memory scale factor A, which is
expected to be A = 1 for general relativity. In section 4, we summarise our results and discuss
future research.

2. Search for gravitational-wave memory with GWTC-3

We follow the method laid out in references [17, 18], calculating a memory versus no-memory
Bayes factor for each event and then adding the log Bayes factors. However, in this work we
use a different waveform. [17] used two waveform approximants: IMRPHENOMXHM [13] to
cover the extreme mass ratios and NRSUR7DQ4 [44] spin precession effects. In this work, we
use a single waveform, IMRPHENOMXPHM [26], which includes extreme mass ratios, spin
precession effects, and includes several of the most dominant higher-order modes [37].

The memory component of the gravitational-wave waveform is calculated from the oscillat-
ory component of the waveform by using the GWMEMORY PYTHON package [37]. Our analysis
consists of two models, a no-memory hypothesis in which our waveform contains only oscil-
latory wave and a memory hypothesis in which our waveform has both the oscillatory wave and
the memory. We calculate a memory Bayes factor, which is a ratio of the Bayesian evidence
values computed for our two hypotheses:

Zoqc+mem
BFpem = ——. 1
e Z.. (1)

We use data from the Advanced LIGO H1 observatory in Hanford, WA, the LIGO L1 obser-
vatory in Livingston, LA [38] and the Virgo observatory in Italy [5].

To calculate the Bayes factors, we use parameter estimation results obtained using the BILBY
[7, 29] implementation of DYNESTY [32]. Where possible, we use results available on the
Gravitational-Wave Open Science Centre [48]. However, BILBY results are not available for
the events GW190725, GW190728, GW190917 and GW190924, and so we generate new
results from scratch. We omit binary neutron star mergers GW170817 and GW190425. The
IMRPHENOMXPHM waveform model does not take into account neutron star physics and, at
any rate, low-mass binaries produce relatively less memory, making these events expendable
for this analysis.

After performing parameter estimation with the oscillatory waveform, we employ import-
ance sampling on each event in order to reweight the n samples with the oscillatory+memory
likelihood [25]:

1 n
BFpen = > w(t). )
k=1

Here, the weights w are the likelihood ratios comparing our two hypotheses

Eosc—i—mem (dl ‘ 0/()

Wi (9]() = »Cosc (dl ‘ek) )
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Figure 1. Cumulative natural log Bayes factor InBFio,, as a function of the number
of binary black hole mergers. Large positive values indicate support for the existence
of memory while large negative values indicate support for the no-memory hypothesis.
The current data are inadequate to differentiate between these two hypotheses.

where d; is the data for event i and 6 are the parameters associated with posterior sample k.
We employ a minimum frequency of 20 Hz. The total Bayes factor for GWTC-3 is simply

N
BEY. = [ [ BFhem- “
i=1
We consider InBFi*L > 8 to be a detection of memory [23].

In figure 1, we plot the cumulative Bayes factor as a function of the chronological event
number. Some events are more informative than others causing comparatively large jumps.
The final value is InBF. = —0.01, which is too small to favour one hypothesis over the
other. This is expected as O(2000) events are needed before we expect to have the statistical
power to distinguish between these two hypotheses [17]. The uncertainty from the reweighting
method is <0.01, much less than the threshold of detection of 8, see bottom panel of figure 1
of [18].

The Bayes factors for individual events are displayed in figure A1 of the appendix, which
includes a comparison with previous results and an explanation for differences between this
work and reference [17]. We omit event GW 190424 from our analysis, as it was not deemed a
significant event for inclusion in GWTC-2.1 [41], despite being present in previous searches

for memory [17].

3. Search for new physics with non-standard memory

In order to search for new physics, and following references [15, 31], we allow the amplitude
of the memory to vary by a multiplicative factor A so that the gravitational-wave signal is

hiotal = Nosc (t) + Ahmem (l) . (5)
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Figure 2. The posterior for A given the 88 events in our analysis (blue). The posterior
is consistent with A = 1 (dashed line) predicted by general relativity. The 95% credible
interval (dark blue) yields an upper limit of A = 23. To better constrain A, we remove
3 events most affected by non-stationary noise (GW170104, GW170818, GW200128)
from the posterior (green), with an upper limit of A = 15.

By construction, general relativity predicts A = 1. However, in this framework, we speculate
that new physics—perhaps related to BMS symmetry [9, 30]—Ieads to a waveform with A # 1.
We assume that A is the same for each event and calculate the posterior for A given the events
in GWTC-3:

p (A|Zz) x W(A)ﬁ/dﬂﬁ(d,» 1A,0,) 7 (6)). 6)

We take the prior 7w (A) to be uniform on the interval (0, 400).

The posterior distribution for A (calculated with all of the events in GWTC-3) is shown in
figure 2. It is consistent with the general relativity prediction of A =1. We set a 95% upper
limit of A =23. Again, we employ a minimum frequency of 20 Hz.

In the course of carrying out this analysis, we noticed that, for some events, the posterior
favours large values of A. The blue distribution in figure 3 shows this behaviour for one such
event (GW170818), which favours A =~ 300 over A = 1 with a likelihood ratio of ~20. While
it is expected that some events will produce posteriors peaked away from A = 1 due to noise
fluctuations, we do not observe such large fluctuations when we repeat the analysis using sim-
ulated Gaussian noise.

We confirm that this behaviour is not due to real A = 300 memory by analysing ‘off-source’
data where no oscillatory gravitational-wave signal has been detected. We analyse the off-
source data with a memory-only model with no oscillatory component and calculate the pos-
terior for A. We observe a similar pattern with /3 /88 fake events exhibiting large fluctuations
away from A = 1. We conclude that unmodeled non-Gaussian noise in the LIGO-Virgo data
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Figure 3. The posterior of A for GW170818. The posterior calculated from a 20 Hz
(50 Hz) high-passed data is shown in blue (green). The 50 Hz high-passed posterior has
a stronger support for A =0 and A =1 and favours a smaller A.

is affecting our posterior for A3. In hindsight, this is perhaps not surprising as non-stationary
noise is known to lurk at low frequencies where memory is most pronounced [3, 39].

In figure 4 we provide a visualisation to show how non-Gaussian noise can yield high like-
lihood values for large values of A. Each panel is a time series of whitened strain. Blue is
Livingston L1 data for GW170818. The expected memory waveform is in green. Since we
include only frequencies within the LIGO-Virgo observing band (above of minimum fre-
quency of 20 Hz), the memory does not induce a DC offset, but instead produces a short-
duration wave packet; see also [23]. The expected oscillatory + memory waveform is in
orange.

The top panel shows the expected A = 1 waveform predicted by general relativity. For this
particular event, the memory is negligible. However, the oscillatory + memory waveform is
not well-matched to the data at the moment of peak strain. This discrepancy can be plausibly
explained as a noise fluctuation since this deviation between orange and blue is not unusual
compared to the fluctuations in the noise at late times after the gravitational-wave signal has
passed. The second and third panels show the same plot with A = 100 and A = 300. By increas-
ing the memory amplitude, the waveform better fits the noise fluctuation. Since the memory
signal is so short in duration, this does not spoil the fit with the earlier inspiral phase. Viewed
in the time domain, it is apparent that the short, memory impulses are similar to broadband,
low-frequency non-Gaussian noise.

Next, we carried out an investigation in order to identify the frequency band where this non-
stationary noise is most pronounced. We create a distribution of strain of different frequency
bins from 100 random segments of data and fit each distribution with a Gaussian function. We
expect that all frequency bins contain some non-Gaussian noise. However, we find the 20 Hz
frequency bin to be especially non-Gaussian with reduced chi-squared value of x> =2 x 10°
whereas the 50 Hz frequency bin ¥?> = 1.6 is more consistent with a Gaussian noise. Testing

3 We consider two other hypotheses that might explain why the posterior prefers large values of A for some events.
First, we do not take into account uncertainty in our estimation of the noise power spectral density [8, 35]. Second,
we do not take into account correlations between frequency bins that arise from so-called finite-duration effects [36].
Thus, our likelihood is slightly misspecified due to approximations we make about the noise. However, we rule out
these explanations because we do not see posteriors that favour large values of A when we analyse Gaussian noise
with the same slightly misspecified likelihood.
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Figure 4. A plot of the full (osc+mem) and memory (mem) waveform with the whitened
Livingston (L1) data for GW170818. As the A increases, the full waveform fits increas-
ingly well to the whitened data.

regularly spaced frequency bins, we conclude that the non-Gaussian noise is most pronounced
in the band: 20-50 Hz. This motivates us to see how the results change when we increase the
minimum frequency from 20 Hz to 50 Hz.

In figure 3 we compare the posterior for A calculated using fi,i, = 20 Hz (blue) and fi, =
50 Hz. The posterior calculated with fi,;, = 50 Hz is consistent with A = 1. This is consistent
with our hypothesis that the A posterior is biased by non-Gaussian noise in the 20—50 Hz band.
We recalculate the posterior distribution by removing the three events that appear to suffer from
non-stationary noise the most (GW170104, GW170818 and GW200128) and obtain the green
curve in figure 2. The resulting upper limit on A is reduced to A =15. Although removing
the low-frequency data removes the non-Gaussian noise, it also removes part the memory
signal, reducing the optimal SNR by 10-66%. This reduces our ability to detect memory and
to constrain A.

We consider various solutions to deal with the non-Gaussian noise at low frequencies.
Instead of throwing out the 20-50 Hz, one could model the non-Gaussian noise by developing
amore sophisticated likelihood function. In this approach the likelihood down-weights the data
affected by the non-Gaussian noise as it is less trustworthy. The disadvantage of this approach
is that the the down-weighting still reduces the sensitivity of the search, though, not as much as

7
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removing the low-frequency data entirely. The best solution is to reduce non-stationary noise
with commissioning. Investigating this possibility is a goal for future research.

4. Conclusion

With LIGO-Virgo-KAGRA’s fourth observation run already underway and the fifth obser-
vation run is planned to start in 2027, the number of gravitational-wave events will greatly
increase. It is expected we will reach the ~2000 events needed to detect memory during the
fifth observing run. Non-Gaussian noise between 10-50 Hz needs to be better understood, oth-
erwise the required number of events to detect memory may be larger. We suggest mitigating
the non-Gaussian noise either through detector commissioning or by developing a model for
non-Gaussian noise.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://gwosc.org/eventapi/html/GWTC/.
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Appendix. Bayes factors for individual events

We compare our InBF¢;, values for GWTC-1 [2] and GWTC-2 [4] with the previous search
of memory in [17], as shown in figure Al. For most events, our Bayes factor computed
using IMRPHENOMXPHM (blue dots in figure Al) is very close to [17], computed using
IMRPHENOMXHM and NRSUR7DQ4, hence are in agreement within waveform systematics.

However, there are a few individual events where the Bayes factors are noticeably differ-
ent. The differences in our results can be attributed to several factors. The largest factor is the
changes made in the GWMEMORY package between the time of [17] and now. The most signific-
ant change was switching to an analytic version of the mode amplitudes using Clebsch—Gordan
coefficients, aligning memory to the SXS memory prediction. A second factor may be due to
systematic difference between the different waveform approximants. To find the difference
between waveforms, we run parameter estimation on GW190924, which has the greatest dif-
ference in Bayes factor, using the same waveform as [17], IMRPHENOMXHM. The difference
between our Bayes factor forIMRPHENOMXHM and IMRPHENOMXPHM is ~0.01.
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Figure A1. The individual InBFmem for all 88 binary black hole mergers. Our results
computed using IMRPHENOMXPHM are shown as blue dots, while the results from [17]
computed using IMRPHENOMXHM and NRSUR7DQ4 are shown as pluses and crosses,
respectively.
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